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Abstract

Vertical seismic pro�le (VSP) data provide a means to estimate the seismic wavelet at dif-

ferent receiver depths. The downgoing wave�eld has always been the key to measure atten-

uation (Q) and enables us to correct for the e�ects of seismic attenuation on seismic data.

We demonstrate that we can also use the upgoing wave�eld to estimate Q, using reections

and mode-converted waves. In this work, Q is estimated from synthetic VSP downgoing

and upgoing wave�elds by using the spectral matching method. We also estimated Q, using

the spectral matching method, from VSP data collected in a 500 m deep well in a heavy oil

�eld and a 2000 m deep well in a shale gas play in Western Canada. For the �rst case, we

obtained values of QP of approximately 50 and QS of 20 for the strata intersected by the

well. For the second case, we obtained values of QP of approximately 50 and QS of 30. In

the case of QS estimations, our results indicate that using the upgoing converted wave�eld

provides good estimations when downgoing S-wave are not available in the data.
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Chapter 1

INTRODUCTION

1.1 Introduction

A general de�nition of seismic attenuation is the decay in amplitude during wave propagation

that cannot be explained by geometric spreading over the distance travelled. The quality

factor Q, is a parameter inversely proportional to seismic attenuation. Liner (2012) summa-

rized the common attenuation processes as in Figure 1.1. Typically, these are separated into

two kinds of attenuation, intrinsic attenuation, and apparent-attenuation (Spencer et al.,

1982; Richards and Menke, 1983; Liner, 2012), which are described below:

Intrinsic attenuation: is the conversion of wave energy into heat. This can be measured on

a material sample in the laboratory and represents a rock property. This type of attenuation

is approximately constant and usually small in the frequency band of surface seismic (Liner,

2012).

Apparent attenuation: is due to the presence of a layered media in which various processes

occur such as reection, transmission, multiples, and mode conversion. These processes

conserve the energy. Another kind of apparent attenuation is due to random scattering

which occurs mainly in the near-surface rocks (Liner, 2012).

The downgoing wave�eld recorded in a zero-o�set vertical seismic pro�le (VSP) data set

provides a means to estimate seismic attenuation (Q) through a rock sequence (Figure 1.2a).

This gives us access to the wavelet at di�erent receiver depths, which makes Q estimation

a relatively straight-forward process. However, we may encounter the following problems in

determining Q, when using the downgoing wave�eld from a zero-o�set VSP. Firstly, some

receivers may be very close to the source. Shallow data recorded by these receivers may be

clipped or swamped with noise. Also, the wave�eld has travelled for only a short period of

time and signi�cant attenuation may not be observed when the data is processed (Montano

et al., 2015). Therefore, estimates of Q in very near-surface strata can be problematic.

Secondly, downgoing shear waves are not always easy to identify in a zero-o�set VSP
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with a vibrator or dynamite energy source. The direct shear wave must travel through

the near-surface, losing signi�cant energy and bandwidth. If we desire to obtain reliable

QS estimation through the rock strata over the full depth of the well, this energy loss is a

problem.

One way to solve these issues is to use the upgoing wave�eld from a zero-o�set VSP

(Figure 1.2b). For this case, a virtual source (green dot) is assumed far from the receivers in

the near-surface (Figure 1.2c). This enables more reliable Q estimations in the near-surface.

For QS measurements, we propose an alternative method to estimate QS by exploiting

converted-wave (P-S) reections from a walkaway VSP (Figure 1.3a). In this case, the

downward propagating seismic wave�eld travels as a P-wave and reects as an S-wave. As a

result, the S-wave generated at the conversion point has the same bandwidth as the P-wave

incident upon the reector (Figure 1.3b, green dots). This enables reliable QS estimations

over the full depth range of the VSP data.

Amplitude

Attenuation

Geometric spreading

Apparent

Intrinsic

Layer effects

Random

Multiple scattering

Primary transmission loss

Mode conversion

Rayleigh scattering

Mie scattering

Figure 1.1: Amplitude phenomena related to subsurface properties. From Liner (2012).

2



S
u

rf
a
c

e
 s

o
u

rc
e

V
ir

tu
a
l 
s
o

u
rc

e

P
P

P
P P

(a
)

(b
)

(c
)

F
ig

u
re

1.
2:

V
er

ti
ca

l
se

is
m

ic
p
ro

�
le

P
-w

av
es

,
(a

)
D

ow
n
go

in
g

w
av

e�
el

d
,

(b
)

U
p
go

in
g

w
av

e�
el

d
an

d
(c

)
U

p
go

in
g

w
av

e�
el

d
fr

om
a

v
ir

tu
al

so
u
rc

e
in

d
ep

th
(g

re
en

d
ot

).

3



(a)                      (b)

Virtual source

Source

P
S

S

Figure 1.3: Mode-converted waves having (a) a surface source and (b) a virtual source in
depth.

1.2 Thesis objectives

The main goal of this thesis is to use data from a multicomponent VSP in a heavy oil

reservoir to measure seismic attenuation and to identify uid saturation within the strata

intersected by the well. This was achieved by de�ning speci�c tasks which are the following:

� Processing the multicomponent VSP data set without altering the amplitudes;

picking travel times of �rst breaks and upgoing events; rotating the compo-

nents and separating the wave�elds.

� Measuring P-wave attenuation from downgoing and upgoing wave�elds in the

zero-o�set VSP data.
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� Measuring S-wave attenuation from the downgoing wave�eld in zero-o�set VSP

data, and from converted-waves recorded in walkaway VSP data.

� Comparing seismic attenuation versus velocity along the strata intersected in

the well to identify uid saturation.

1.3 Data

Case Study 1

A walkaway VSP located in Western Canada was used for this part of the thesis. Fourteen

source points were acquired; �rst, using 0.125 kg of dynamite at 9 m depth for energy source,

and then with an EnviroVibe source using a linear sweep of 10-300 Hz over 20 s (Figure 1.4).

The acquisition parameters are shown in Table 1.1.

Table 1.1: Acquisition parameters for case study 1.
Parameters

Number of shots 14
Number of receivers 222

Type of receivers VectorSeis
Receivers depth 63.72 - 506.63 m
Receiver spacing � 2 m

Record length 3 s
Sampling 0.001 s

Date December 2011

Case Study 2

We also studied a 3D VSP located in Western Canada. For this case, 1047 source points were

acquired with a Mertz 18 vibrator using a linear sweep of 6-120 Hz over 12 s (Figure 1.5).

The acquisition parameters for this study, are shown in Table 1.2.
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Table 1.2: Acquisition parameters for case study 2.
Parameters

Number of shots 1047
Number of receivers 135

Type of receivers GeoRes 57
Receivers depth 11.1 - 2026.46 m
Receiver spacing � 15 m

Record length 6 s
Sampling 0.002 s

Date February 2012
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Figure 1.4: Case study 1: borehole location (blue triangle) and source points (red dots).
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Figure 1.5: Case study 2: borehole location (blue triangle) and source points (red dots).
Yellow dot indicates source point 1 at 72 m from the well. Green dot indicates source point
at 300m from the well used for future work.
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1.4 Software

MATLAB R was used to compute synthetic zero-o�set VSP data. NORSAR2D R was used

to compute synthetic walkaway VSP data. For the case study 1 and 2, we processed the �eld

VSP data set using VISTA and MATLAB software. LATEX was used for the thesis assembly

and INKSCAPE to edit �gures.

Following is a detailed list of software used in this thesis:

� VISTA2D/3D R; Schlumberger seismic processing software.

� MATLAB R 2013; student version. High-level language for scienti�c and en-

gineering computing.

� NORSAR2D R; a ray modelling package to create synthetic seismic data using

ray-tracing algorithms.

� LATEX; an open source text editor.

� INKSCAPE; an open source �gure editor.

1.5 Original Contributions

The main contribution of this thesis is an alternative method to estimate seismic attenuation

(Q) from reections and mode-converted waves recorded in VSP surveys. As we mentioned

previously, the direct downgoing wave�eld recorded in VSP surveys provides a means to

estimate Q through strata intersected by the borehole. However, we encountered problems

estimating Q through the near-surface strata when using the downgoing wave�eld. For this

reason, we explored an alternative method using reected and mode-converted waves. Here

is a list of the speci�c contributions:

� Rotation to isolate mode-converted upgoing S-waves events using a time-

invariant polarization.

� An alternative method to estimate QP in the near-surface using the upgoing

wave�eld or reections (P-P) recorded in a zero-o�set VSP survey.
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� An alternative method to estimateQS from mode-converted waves (P-S) recorded

in an o�set VSP survey.

� An existing function named VSP separation to separate the wave�eld in

a VSP, was upgraded and split into VSP separation down to extract the

downgoing wave�eld, and VSP separation up to extract the reected and

mode-converted upgoing wave�eld.
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Chapter 2

THEORETICAL BACKGROUND

2.1 Vertical seismic pro�le

For a vertical seismic pro�le (VSP) survey the geophones are placed at various depths in a

well to measure a seismic signal generated at the surface of the earth (Hardage, 1985). The

location of the geophones enabled us to record both downgoing and upgoing seismic events

(Figure 2.1a and 2.1b respectively). Whereas, in surface seismic acquisition, only upgoing

events or reections are recorded. Also, each receiver records P-waves or S-waves (Fig-

ure 2.1c). P-waves vibrate in the direction of propagation whereas S-wave vibrate perpen-

dicular to the direction of propagation, either in the plane of source and receiver (SV-waves)

or out of the plane (SH-waves) (Hinds et al., 1996).

2.1.1 Types of VSP surveys

VSP surveys are classi�ed by the geometry which depends on source o�set, borehole trajec-

tory, and receiver array (Figure 2.2).

Checkshot and zero-o�set VSPs, the most common type, are surveys that have the energy

source placed close to the wellhead (Martinez and Jones, 2010).

O�set, walkaway and walkaround VSPs surveys all have the source o�set from the well

(Martinez and Jones, 2010).

3D VSP’s are acquired to illuminate 3D structures; the survey geometry can follow either

parallel lines or concentric circles around the borehole (Martinez and Jones, 2010).

Crosswell VSP is less common and consists of two boreholes; one to deploy the seismic

source and the other, the receiver array (Martinez and Jones, 2010).
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Figure 2.1: Vertical Seismic Pro�le. (a) Downgoing wave�elds, (b) Upgoing wave�elds, and,
(c) Modes. Adapted from Hinds et al. (1996) and Martinez and Jones (2010).
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Figure 2.2: VSP survey types. (a) Checkshot, (b) Zero-o�set, (c) O�set, (d) Walkaway, (e)
Crosswell, (f) 3D, and, (g) Walkaround. Adapted from Martinez and Jones (2010).
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